SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing

نویسندگان

  • Sifan Chen
  • Maximilian Felix Blank
  • Aishwarya Iyer
  • Bingding Huang
  • Lin Wang
  • Ingrid Grummt
  • Renate Voit
چکیده

SIRT7 is an NAD(+)-dependent protein deacetylase with important roles in ribosome biogenesis and cell proliferation. Previous studies have established that SIRT7 is associated with RNA polymerase I, interacts with pre-ribosomal RNA (rRNA) and promotes rRNA synthesis. Here we show that SIRT7 is also associated with small nucleolar RNP (snoRNPs) that are involved in pre-rRNA processing and rRNA maturation. Knockdown of SIRT7 impairs U3 snoRNA dependent early cleavage steps that are necessary for generation of 18S rRNA. Mechanistically, SIRT7 deacetylates U3-55k, a core component of the U3 snoRNP complex, and reversible acetylation of U3-55k modulates the association of U3-55k with U3 snoRNA. Deacetylation by SIRT7 enhances U3-55k binding to U3 snoRNA, which is a prerequisite for pre-rRNA processing. Under stress conditions, SIRT7 is released from nucleoli, leading to hyperacetylation of U3-55k and attenuation of pre-rRNA processing. The results reveal a multifaceted role of SIRT7 in ribosome biogenesis, regulating both transcription and processing of rRNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription

SIRT7 is an NAD+-dependent protein deacetylase that regulates cell growth and proliferation. Previous studies have shown that SIRT7 is required for RNA polymerase I (Pol I) transcription and pre-rRNA processing. Here, we took a proteomic approach to identify novel molecular targets and characterize the role of SIRT7 in non-nucleolar processes. We show that SIRT7 interacts with numerous proteins...

متن کامل

cDNA cloning and characterization of the human U3 small nucleolar ribonucleoprotein complex-associated 55-kilodalton protein.

The eukaryotic nucleolus contains a large number of small RNA molecules (snoRNAs) which, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. The most abundant and one of the best-conserved snoRNAs is the U3 RNA. So far, only one human U3 snoRNA-associated protein, fibrillarin, has been characterized. Previously, the ...

متن کامل

Molecular Pathways Molecular Pathways: Emerging Roles of Mammalian Sirtuin SIRT7 in Cancer

SIRT7belongs to the Sirtuin family ofNAD-dependent enzymes, themembers ofwhichplaydiverse roles in aging,metabolism,anddiseasebiology. IncreasedSIRT7expression isobserved inhumancancers andgrowing evidence suggests important SIRT7 functions in fundamental cellular programs with an impact on oncogenic transformation and tumor biology. SIRT7 associateswith chromatin,where it catalyzes selective d...

متن کامل

Molecular pathways: emerging roles of mammalian Sirtuin SIRT7 in cancer.

SIRT7 belongs to the Sirtuin family of NAD-dependent enzymes, the members of which play diverse roles in aging, metabolism, and disease biology. Increased SIRT7 expression is observed in human cancers and growing evidence suggests important SIRT7 functions in fundamental cellular programs with an impact on oncogenic transformation and tumor biology. SIRT7 associates with chromatin, where it cat...

متن کامل

Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP.

In the nucleolus the U3 snoRNA is recruited to the 80S pre-rRNA processing complex in the dense fibrillar component (DFC). The U3 snoRNA is found throughout the nucleolus and has been proposed to move with the preribosomes to the granular component (GC). In contrast, the localization of other RNAs, such as the U8 snoRNA, is restricted to the DFC. Here we show that the incorporation of the U3 sn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016